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On May 5th 1966 I passed my examination in Theoretical Physics to obtain the Diploma. The 
next day I started a 6 month trip to Nepal with 2 friends and an old VW bus. We came back 

from this marvellous adventure with the desire to 
work. My two friends joined industry as engineers. I 
looked for a thesis together with my friend Manfred 
Birr. 
 
After some unsuccessful attempts, we visited the 
institute of Heinz Maier-Leibnitz at the FRM in 
Garching and were received by the big boss 
personally. His nickname at the institute was ML. He 
proposed two subjects for a thesis. One was about 
improvements of the existing gravity diffractometer 
and to measure coherent neutron scattering lengths 
with very high precision. The other was to develop 
from scratch a new technique in neutron 
spectroscopy. ML scribbled on his blackboard a setup 
consisting of a neutron beam out of the reactor, a 
crystal, a sample, a second crystal, and a neutron 

detector; like a TAS spectrometer with the difference 
that both crystals were oriented with a Bragg angle of 
90°. 
 
ML explained to us that in this way a very high-energy 
resolution of the order of 10-4 (dE/E) (or µeV) could be 
obtained if one would use perfect crystals and the 
backscattering (BS) technique. But, he mentioned that 
were some difficulties: (1) The low intensity to be 
expected could possibly be overcome by a very large 
solid angle covered by the second (analyser) crystal. 
(2) How to separate the reflected beam from the 
incident beam? (3) How to vary the energy? This 
challenging project naturally interested both of us, 

much more than the work on an existing instrument. Finally, after some discussion between 
us, we proposed to ML to both work on the ‘Rückstreuspektrometer’ or Backscattering 
spectrometer (BSS), each one choosing a research topic to be tackled with the proposed 
spectrometer. ML was initially not happy about this idea, objecting that he had already had 
bad experiences with this kind of arrangement. But finally he accepted our proposal. His 
secretary later called us ‘die Zwillinge’ (the twins). 
  

Fig.1 Manfred Birr celebrating his thesis 
on QNS in Glycerol  (1969) 

Fig.2 Heinz Maier-Leibnitz (1911–2000) 
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Fig.3b Berthold Alefeld (2003) 

Bert Alefeld became our tutor. A few weeks after our start ML left the institute in Garching to 
manage the HFR project in Grenoble. So later we met ML only about once every two months, 
where we were invited to present our progress reports to him. This was quite good for us, 
leaving us a lot of freedom. We enjoyed very much to work with Alefeld, who was in the 
process of finishing his own thesis, which was too demanding a task, consisting of building a 
bundle of three neutron guides (the first ones at the FRM) and the BSS! When we arrived at 
the FRM in November 1966, the first neutron guide was just finished. We helped Alefeld to 
perform gold-foil activation measurements to determine the total neutron flux. Instead of 
developing the BSS, Alefeld installed at the end of this guide a Backscattering diffractometer 
(BSD) to perform high-precision measurements (10-5) of the lattice parameter changes in 
SrTiO3 near the phase transition. This BSD, consisting of two SrTiO3 crystals mounted in N2 
cryostats, one equipped with a Mössbauer drive, a small neutron guide made of glass tubes of 
circular cross-section with a nickel coated inner surface, and a rotating counter had been 
developed from scratch by Alefeld. 
  
A year before Alefeld had installed a double-crystal setup in near BS geometry on a vertical 
beam tube in the FRM above the core, and did the first BS experiments with lead and silicon 
crystals proving that one can achieve µeV with the BS geometry. He showed also, for the first 
time, the effect of gravity on free-falling neutrons.  
 

     

 
 
 

This experiment was published in the “Sitzungsberichte der Bayerischen Akademie der 
Wissenschaften”, a typical choice for ML, who liked to publish in not so well known journals! 
 
So that was the start. Coming back to our thesis work, the first thing to do was to try different 
techniques to build small neutron guides. One idea was to use commercially available 
microwave guides made of brass. The problem was the surface quality. So after some 
unsuccessful polishing trials we abandoned this line. Fortunately Erich Steichele had just 
started to develop a 140 m long thermal neutron guide at the FRM, as a prototype for a project 
at the HFR in Grenoble. After many useful discussions with Steichele, we were able to build 

Fig.3a The first BS setup on a vertical tube at the FRM (1964) 
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our own glass guides with the required dimensions (4*4 and 2*2 cm**2 cross section 
respectively). 
 

 
 
  
The spectrometer included also a neutron trumpet: a converging guide with a nickel coated 
inner surface focussing the beam onto the sample. The Doppler drive for the monochromator 
was the same as that of Alefeld, who had brought it from the Mössbauer institute next door. A 
disk chopper, used to separate the incident from the scattered neutrons, was developed by us, 
as well as all other mechanical parts. We subcontracted the fabrication to the mechanical 
workshop of the institute. It was very important to have excellent relations with the workshop. 
This was in part achieved with a gift of a ‘Bier-Tragl’ now and then. 
 
The biggest problem was how to build the large solid-angle analyser: how to align about 2000 
Si single crystals with a precision better than 1/10° on a spherically curved surface? The 
problem was finally solved like the ‘Ei des Kolumbus’: A laboratory at Siemens was able to 
cut silicon single-crystal rods into thin slices with a precision of 0.10°. A small company 
produced 25 Al plates for us with a curved surface. We glued the 2000 Si single crystal slices 
by pressure with our thumbs and later (after health problems) with a pneumatic piston using a 
special contact glue. NB.: the crystals remained bent on the curved surface. In this way the 
optical quality of the mirror was improved, and the strain induced an increase in the 
reflectivity. 
 
After about 1.5 years of hard work the spectrometer was finished and we started the tests. A 
vanadium spectrum was obtained in 10 days with a signal to noise ratio of about 1. The good 
news was: the energy resolution was 0.6 µeV FWHM for an incident energy of 2 meV. 
Now, new physics could be tackled in the domain of µeV or GHz. Manfred Birr started to 
measure Plexiglas at different temperatures obtaining only unbroadened spectra. Much more 
successful was the Quasielastic Neutron Scattering (QNS) in glycerol. The QNS broadening 
was much narrower than the one determined previously by Larson with much coarser energy 
resolution with a time of flight spectrometer.  
 

Fig.4 Erich Steichele: Technology 
transfer from neutron guides to living 
room tables (2006?) 
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The science part of my thesis was to try to measure hyperfine splittings in solids. Two options 
were considered: quadrupole or magnetic interactions. The first one was tackled with an 
As2O3 sample at room temperature. From NQR a splitting of 0.5 µeV (about 120 MHz) was 
known to exist. After a very long run of 450 hours not even the elastic peak could be seen! 

(Later, I repeated the experiment several 
times at the ILL without success. In a 
discussion with Otto Schärpf he tried to 
explain to me that the experiment cannot 
work in principle! Until now, I could not 
prove experimentally that Schärpf is 
wrong.) 
 
My second trial was V2O3 below its 
antiferromagnetic phase transition. For 
this I needed a liquid-nitrogen cryostat, 
which we had to develop by ourselves. 
After a very long run of 505 hours a 
spectrum was obtained at 105 K with still 
bad statistics but which showed a 
shoulder on each side of the elastic peak: 

Inelastic Spin Flip Scattering on Zeeman hyperfine split nuclear levels of Vanadium was 
born! Or at least there was some indication of it. Fitting this spectrum with a 3 peak model 
gave a HF splitting of 175+/-15 KOe (0.81 µeV) at the vanadium nucleus. The value was 
confirmed in later experiments. This was a nice result. The Glycerol and the V2O3 results 
were published and our twin theses were finished at the end of 1969. We had given the proof 
to ML that a twin team of thesis students could work. 
 
We both started to look for jobs. Manfred ended up in industry. After a 2 month trial in a 
laboratory at Siemens in Munich I felt strongly that industry was not my place of choice, and I 
was very lucky that I could get a postdoc position at the FRM in the institute I had left only a 
few months before! The first thing in 1970 was to dismantle the BSS because of the very low 
data acquisition rate, as I knew that a new project was in the pipeline in Jülich. I had a number 
of students working on several other BS development projects: Measurements of lattice 
parameters near phase transitions, very high resolution tests of Si at higher orders, 
monochromator tests in BS conditions, tests of BS with thermal neutrons, bunching TOF tests 
and preparation of experiments to be performed at the coming Pi-spectrometer at the KFA 
Jülich. There was also Mathias Hetzelt, a thesis student, who continued the work left by Knut 
Berndorfer on polarised neutrons with polarisation analysis in collaboration with our 
theoretician Kurt Binder, who later became the Monte Carlo simulation specialist. 
 
Jülich 1970 -1972 
 
Bert Alefeld left Garching in 1969 to take the job proposed to him by Tasso Springer at the 
KFA Jülich to build a new BS spectrometer (the Pi-spectrometer) on the cold-neutron source 
of the Dido reactor. 
 
The flux expected was about a factor 100 higher than in Munich! A new transparent Doppler 
drive was developed. A pyrolytic graphite crystal deflector was inserted in the primary 
spectrometer. Crystal quality tests were performed at the FRM. Several Q values could be 

Fig.5 Tasso Springer in the ‘Garchinger Heide’ 
meditating on the FRM project (1956) 
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measured simultaneously with a multi-arm analyser. When the spectrometer was ready for 
tests, Bert Alefeld invited a few young scientists to help him to commission the instrument. 
Tanja Peterlin, Claude Zeyen and I were among the happy few. Tanja was in the process of 
finishing her thesis on QNS in polymers. Claude worked on Ferroelectrics. I continued to 
work on hyperfine interactions. After my arrival in Jülich with my samples and a specially 
developed 4He cryostat with a narrow tail it turned out that the cryostat formed a leak during 
the travel in my VW Käfer! So a technician at KFA helped me to get rid of the leak. When we 
were ready to go down to He temperatures a wrong manipulation made the 4He vessel 
implode! But again, with the help of the cryogenics group, the vessel was rebuilt in record 
time and finally the V2O3 sample could be measured. Before that the resolution function had 
been measured under different conditions. A FWHM of about 0.3 µeV was obtained with 
polished Si crystals, an excellent result! The intensity was as good as expected. 
 
The V2O3 sample was put into the cryostat in an evening in early 1971 and the run started at 
5K. I went to bed and had bad dreams. Remember that the statistics of the spectra obtained at 
the FRM were not very good. Next morning Bert and I went to the instrument. Everything 
seemed to be OK. The instrument was working the sample temperature was still at 5K. We 
stopped the run and looked at the screen: There was a nice elastic peak on it, and no inelastic 
lines. I felt close to a heart attack. A disaster! Maybe my whole thesis was untenable. 
 
But a closer look at the spectrum revealed an indication of some weak inelastic feature at the 
bottom of the resolution peak. Optimistic conclusion: Maybe the sample was not good 
anymore. In fact V2O3 is a member of the Magneli family VnO2n-1 and undesired oxidation 
can occur. After some discussion with the scientist responsible of the chemistry lab of the 
institute, he proposed to make a fresh V2O3 powder sample. After a few days the new sample 
was ready and was loaded in the bottom-loading cryostat and a new run was started. 
Nervously we looked at the life screen when the first counts arrived. After only a few minutes 
there was no doubt: a three-peak structure developed on the screen. My thesis was saved! The 
temperature dependence of the hyperfine splitting in V2O3 was then investigated and the 
results presented at the IAEA neutron conference of 1972 in Grenoble. 
 
The Pi spectrometer was a great success. Thesis students of Bert Alefeld used it to open new 
research fields in the µeV resolution domain of QNS. Ait Salem studied self diffusion in a Na 
single crystal. Dieter Richter and Johannes Töpler investigated H motions in N doped Nb and 
NH4 reorientations in NH4Cl. Bert Alefeld measured the tunnelling spectrum of CH3 groups 
in Di-methyl-di-acetylene for the first time. Many other successful experiments followed and 
some of them were improved and completed later at the IN10 in Grenoble. 
 
Grenoble and elsewhere 1971-2014 
 
ML left the position of the ILL director in 1970 and Rudolf Mössbauer took over. This was 
the time when discussions took place about the second generation of ILL instruments. Tasso 
Springer pushed for a BSS at the ILL. ML discussed the option of a so-called bunching TOF 
spectrometer, where one uses time focussing of neutrons from an accelerated mica 
monochromator. Tanja Peterlin was engaged in this project. Feri Mezei came up with his 
ingenious idea of neutron spin echo (NSE). 
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So Mössbauer had to make a decision. He was very enthusiastic about NSE and thought that a 
BSS was less interesting. But under the pressure of the lobby in Munich and Jülich he decided 
to have both the NSE and the BSS built. But he posed some conditions for the BS project. It 
should be cheap (an attitude that came from his former thesis adviser – ML): the Springer 
institute in Jülich should provide the Doppler drive and the PDP11 computer. Munich should 
provide a postdoc for the time of construction. The postdoc was me. I was happy to leave 
Munich for about 2 years. I arrived 
in Grenoble in my VW Käfer, after a 
wonderful trip through the Alps 
passing through Chamonix and 
admiring the view of the Mont Blanc 
in autumn 1972. 
  
The choice of the instrument site was 
a free position on the cold neutron 
guide H15 between D7 in 
construction and D11 already 
operational. The instrument got the 
name IN10 because IN9 existed as a 
project for a TOF instrument with 

polarisation analysis using a 
polarised proton target (Peter 
Seyfert and Graham Jenkin): a 
project later abandoned. The 
technical services of the ILL (G. Gobert, I. Lefèvre, P. Ledept and others) did a remarkable 
job to build the IN10 spectrometer in record time of about 2 years with a very tight budget, 
orders of magnitude smaller than what is spent today for a similar instrument! Naturally, 
everything was modest, but it worked. The use of the PDP11 computer was, by the way, a 
nightmare! Beginning 1974 we started to commission the instrument. The intensity was as 
expected about 10 times higher than in Jülich, the energy resolution very similar. After some 
vanadium runs I put a sheet of cobalt metal into the beam position of IN10. After one night 
the result was fantastic: a spectrum consisting of 3 completely separated peaks of nearly equal 
height with a hyperfine splitting of about 1µeV ready to be published in a text book.  
 

Fig.6 Mike Lomer and Rudolf Mössbauer, ILL Directors  
(1974) 
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I printed the spectrum with the teletype, went up to the office of Mössbauer, and slipped the 
paper under the locked door (it was a Sunday morning). On the following day Mössbauer 
called me up and told me that he was very impressed by the result.  
 
The first user experiment to be published was that of Julia Higgins et al. on QNS in a 
polymer. This was the beginning of the success story of IN10, which became the workhorse in 
BS spectroscopy and stayed that way for a long time. I remember with pleasure the excellent 
collaboration with Spencer Howells, who developed the first data evaluation program for 
IN10. My scientific activity was at that time concentrated on the study of hyperfine 
interactions with a challenge to measure nuclear spin waves (NSW) with neutrons. A thesis 
student, Bob Word, of Stephen Lovesey did a lot of calculations of INS cross-sections. With 
Dieter Richter we tried hard but without success to do a suitable experiment. I finally stopped 
working in the nuclear spin excitation domain and joined the tunnelling experts! Only rather 
recently the NSW domain has been revived by Tapan Chatterji, who investigated successfully 
Nd, Co and Ho intermetallics. In a recent paper by him he claims that he has detected an 
indication of NSW’s: to be confirmed! 
 
Key experiments were among others the tunnelling motions of CD4 and CD3 groups. It was a 
great pleasure to work with Werner Press, Alfred Hüller, Jim A. Morrison, Michael Prager 
during these, and other, related experiments. Another grateful thought comes up remembering 
many exciting experiments done on different ILL spectrometers with the NMR specialist Stan 
Clough. We were complementary: NMR combined with INS! 
 
I cannot forget one event that happened on IN10. Alan Leadbetter and Francis Temme did an 
experiment on QNS on a liquid crystal in a magnetic field. They used a water-cooled 
electromagnet. One early morning during this experiment I checked the state of the 
instrument. To my surprise water was dripping out under the sample area. I stopped the 
experiment, opened the instrument sample area and found under the sample magnet a pool of 
water! A leak of the cooling system of the magnet had filled the sample area of IN10 with a 
couple of litres of water! I hope that Alan Leadbetter, who became later was one of the ILL 
directors, will forgive me for publishing this story here! 

Fig.7 Hyperfine splitting in cobalt at room temperature. The spectrum obtained on the BSS IN10 was 
published in Z.Physik B20, 385-389 (1975) 
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IN10 retired in 2013 after 39 years of loyal service! During this long period the instrument 
evolved. In 1991 a temperature-scanning monochromator with a number of different crystals 
became available, allowing energy scans up to 1 meV compared to 15 µeV with the Doppler 
drive. Jeremy Cook and Jean-François Barthélémy were much involved in the development of 
the cryo-furnace. With this mode the temperature dependence of the roton minimum of He4 
could be investigated with µeV resolution. 
 
During this time the competition between BSS and NSE continued. But it rapidly turned out 
that the techniques are complementary to each other. A paper comparing the 2 techniques was 
published in 1984. BS is very good for incoherent scattering from hydrogen etc, especially 
true for inelastic features in the µeV domain. NSE is the tool for coherent QNS at small 
momentum transfers in the ns to ms time domain. 
 
IN10 was built for cold neutrons. But from start a second set of analysers with Si(311) 
crystals was assembled allowing experiments with momentum transfers up to 3.8 A-1. This 
setup was used by Ruep Lechner to measure successfully the Elastic Incoherent Structure 
Factor (EISF) as a function of momentum transfer. This experiment triggered the construction 
of a new BSS for thermal neutrons. The instrument IN13 was installed in an intermediate 
position on the thermal neutron guide H24 at the ILL, and became operational in1981. 
Momentum transfers up to 5.5 A-1 with an energy resolution of 5 µeV at an incident energy of 
16 meV could be attained. The beam position on a thermal guide is not ideal. Due to the small 
beam divergence of the nickel-coated guide, the resulting small intensity limits quite severely 
the domain of applications. Since a number of years IN13 is used as a CRG instrument for 
biophysical applications. The preferred scan method is that of the so-called fixed window 
scan at zero-energy transfer by scanning the sample temperature. The instrument is still in 
operation in 2014 and was developed in collaboration with Jean-Louis Buevoz, Ian S. 
Anderson and Winfried Petry. 
 
Returning to IN10 a proposal was made in 1990 to shift the instrument to a better guide 
position that became available on the second cold source during the 2ème soufflé. Finally it 
was decided to leave IN10 where it was, and to build a new BSS IN10B in the new guide hall 
ILL22. Andreas Magerl was the project leader, succeeded by Bernhard Frick. IN10B had a 
higher flux, about a factor of 2 compared to IN10, the energy resolution being the same. The 
new instrument was easier to use due to its multicounter and more comfortable mechanics. 
 
The ILL has always been a very dynamic institute that constantly developed new ideas and 
improved existing instruments. The Millenium Project is a clear example of this activity. 
Bernhard Frick proposed a new cold BSS profiting from a excellent new cold guide using 
super-mirror focussing techniques, and applying the phase-space transformation from white to 
wide invented in 1984 by Alefeld and Schelten. This technique was for the first time used at 
NIST for their BSS in 2000. Later it was also realised at the new FRMII reactor near Munich 
in 2003 (Spheres). This technique allows an intensity gain factor of about a factor 5.  
 
So the ILL was obliged to invest in this project in order to remain competitive. The new 
instrument IN16B started operation in 2013. It is a very sophisticated machine that can be run 
in several modes of operation. It has vacuum in the primary and secondary flight path to 
optimise intensity and to get a very low background. The new Doppler drive uses the 
principle of a linear motor, developed by Michael Prager in collaboration with industry. It 
provides a larger energy transfer range up to +/- 30 µeV. The intensity is about 5 times higher 
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than that of the preceding instrument, which was dismantled and parts of it are in use on the 
new instrument. Compared to the first BSS at the FRM the new IN16B has a flux at the 
sample position more than 4 orders of magnitude higher! This enormous gain in flux is 
explained by a better reactor (100), with a cold source (10), a ballistic neutron guide using 
focussing super-mirror technology (10), and a phase-space transformer (PST) (5). Evidently 
an important amount of research and development has been invested in the IN16B project 
using modern Monte Carlo simulations for the neutron optics, finite-element calculations for 
the PST, and know-how of the industry for the Doppler drive. All this explains also the 
budget needed to build IN16B and similar instruments like Spheres at the FRMII and the one 
at NIST. It can be expected that the use of IN16B with its high flux will allow tackling more 
difficult experiments on samples with low scattering, high absorption, small size etc. 
 
I did not mention the numerous experiments that failed, or were not published for diverse 
reasons during the past years. This is how research works: You cannot know the result before 
you start – otherwise you would not do the experiment! 
 
I will not talk about the inverted TOF BS spectrometers like those at ISIS at Rutherford, 
BASIS at Oak Ridge and MARS at PSI. This subject merits another history story! Another 
story would be that of X-ray BS spectroscopy pioneered at DESY by Bruno Dorner and then 
further improved and brought to maturation at the ESRF by Francesco Sette and colleagues. 
 
 
Conclusion 
 
The neutron backscattering technique opened a new domain in neutron spectroscopy passing 
from meV (THz) to µeV (GHz). It is complementary to NSE. I think that the large number of 
publications of new results in various fields of science obtained from the use of the high-
resolution neutron BS spectrometers shows that the following statement which is attributed to 
ML is true: 
‘The development of a new method, whenever its precision, sensitivity, or resolution is 
much better than everything that existed before leads to new science’.  
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Many of them are not mentioned in this paper, but they are not forgotten. My special thanks 
are dedicated to my friend Manfred Birr for the wonderful time we have spent together during 
the thesis as twins. It is very sad that Bert Alefeld has left us too soon (Nov 2012). It is he, 
after all, who is the real father of backscattering of neutrons. 
 
Grenoble, August 2014 
 
 
 
 
 
 
 
 

Fig.8 The BS clan: from left to 
right: Anton Heidemann, 
Michel Prager, Bert Alefeld, 
and Bernard Frick, at the ILL in 
(2003) 
 


