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Abstract 

 

The High Flux Reactor (HFR) at Petten is managed by the Institute for Energy and Transport (IET) of the European 

Commission's Joint Research Centre (JRC) and operated by the Nuclear Research and consultancy Group (NRG) which is 

also the licence holder and responsible for its commercial activities. The High Flux Reactor (HFR) operates at 45 MW and is 

of the tank-in-pool type, light water cooled and moderated. It is one of the most powerful multi-purpose materials testing 

reactors in the world and one of the world's leaders in target irradiation for the production of medical radioisotopes. 
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1.1

The reactor was scheduled to return to service in February 2014 after an unplanned 
shutdown period of about 4 months. In 2014 the regular cyc
scheduled number of 216 operation days, regular 4
shutdown period of 
availability of almost 100% with reference to the original schedule
Figure 1). Nominal power has been 45 MW.

During the reporting period the annual 30 MW reactor training for the operators and the 
yearly flux measurements have been carried out in December.
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1.2
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maintenance of all Systems, Structures and Components (SSC’s) of the HFR as described in 
the annual and long
objective to enable the safe and reliable operation of the HFR and to prevent inadvertent 
scrams caused by insufficient maintenance.

Maintenance was performed successfully and comprised

• Regular preventive 

• Periodic leak testing of the containment building as one of the license requirements 
(0.02 MPa overpressure for 24 h);

• In Service Inspection of the reactor vessel, the outlet reducers, the bottom plug and 
primary piping in the P

• Cleaning of the secondary cooling system;

• Two week training for the HFR operator staff.
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2 The HFR as a Tool for Research on Reactors, Materials 

and Fuel Cycles 

 

2.1 Towards a more sustainable fuel cycle with less nuclear waste: 

The FAIRFUELS and PELGRIMM Projects 

In the frame of the EURATOM 7th Framework Programme (FP7), the two closely linked 4-
year projects FAIRFUELS (Fabrication, Irradiation and Reprocessing of FUELS and targets for 
transmutation, http://www.fp7-fairfuels.eu) and PELGRIMM (PELlets vs. GRanulates: 
Irradiation, Manufacturing and Modelling, http://www.pelgrimm.eu) aim at a more efficient 
use of fissile material in nuclear reactors by implementing transmutation. Transmutation 
provides a way to reduce the volume and hazard of high level radioactive waste by 
recycling and converting the most long-lived components into shorter lived species. In this 
way, the nuclear fuel cycle can be closed in a sustainable manner producing less and 
shorter-lived radioactive waste. 

The FAIRFUELS consortium consists of 10 European research institutes, universities and 
industry. The project started in 2009 and is coordinated by NRG. The PELGRIMM consortium 
consists of 12 European research institutes, universities and industry. The project started in 
2012 and is coordinated by CEA. 

Both NRG and JRC-IET work closely together on the HFR irradiations that are scheduled as 
part of the FAIRFUELS and PELGRIMM projects. 

 

2.1.1 SPHERE 

Objective: 

The irradiation test SPHERE was planned as part of the FP7 FAIRFUELS project. SPHERE was 
designed to compare conventional pellet-type fuels with so-called Sphere-Pac fuels under 
similar irradiation conditions. The latter have the advantage of an easier, dust-free 
fabrication process. Especially when dealing with highly radioactive minor actinides, dust-
free fabrication processes are essential to reduce the risk of contamination. 

To assess the irradiation performance of Sphere-Pac fuels compared to conventional pellet 
fuel, an americium-containing driver fuel for fast reactors (both in pellet- and sphere-pac 
form) was fabricated at JRC-ITU in Germany. These fuels are irradiated in the HFR in a 
dedicated test facility which is a novelty because such fuel has never been irradiated 
before. 
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Figure 8: Schematic view of the MARINE irradiation experiment 
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2.2 Fuel and Graphite Qualification for High Temperature Reactors 

High Temperature Reactors (HTR) are being investigated in a number of countries as a safe 
and efficient source of energy, in particular for cogeneration of industrial process heat and 
electricity. Related new demonstration projects are either existing or envisaged in several 
countries (e.g. Japan, China, US, South Korea) and are subject to current R&D in Europe. The 
HFR is used in particular for the qualification of fuel and graphite which are decisive 
elements for the benign safety performance of this type of reactor. 

 

2.2.1 HFR-INET 

The Institute of Nuclear and New Energy Technology (INET) of the Tsinghua University in 
Beijing, China is currently constructing the Chinese Modular High Temperature Gas-cooled 
Reactor Demonstration Plant (HTR-PM). The fuel for the HTR-PM is being manufactured by 
INET. INET requires qualification of their fuel to support licensing of the HTR-PM reactor 
systems. 

 

 

 

 

 

 

 

Figure 12: HFR-INET irradiation rig. 

 

The first step in the fuel qualification (under operational conditions) is performed by NRG. 
Similar to earlier tests for related European programs, five spherical HTR fuel elements 
(pebbles) are irradiated under controlled conditions in the HFR, at constant central pebble 
temperature, while fission gas release is measured online using the Sweep Loop Facility 
which was developed and built by JRC-IET. Fission gas release during irradiation is an 
important measure for fuel performance and quality under operational conditions, and 
forms an essential part of the fuel qualification. For the qualification irradiation a dedicated 
irradiation test facility was designed and manufactured. The irradiation started in 
September 2012 in a high flux in-core position of the HFR and was finished on 30 
December 2014 when the irradiation targets were met. In 2015, the irradiation rig will be 
dismantled, and non-destructive Post Irradiation Examinations (PIE) will be performed in the 
NRG Hot Cells. This non-destructive PIE consists of dimensional and weight measurements, 
gamma scanning and visual inspection. 

For the second step of the fuel qualification (under accidental conditions), the five HTR 
pebbles will be individually subjected to a heating test at JRC-ITU, Karlsruhe in Germany, in 
the so-called KÜFA-facility, again with fission gas release measurements. These heating 
tests simulate a temperature transient during a postulated severe accident of this type of 
reactor. Low radioactive release from the pebbles under these conditions then 
demonstrates the integrity and proper performance of irradiated HTR fuel. 
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2.2.2 INNOGRAPH-1C 

Graphite is used as moderator and reflector material in a High Temperature Reactor and is 
known to first shrink and then swell under irradiation. This behaviour depends on 
temperature, neutron dose and graphite grades. Its understanding is required to enable 
proper design of such reactors and to put the graphite manufacturing industry in a position 
to produce suitable graphite grades with stable properties over longer periods of time. 

The INNOGRAPH-1C irradiation is performed as part of the FP7 ARCHER project (Advanced 
High-Temperature Reactors for Cogeneration of Heat and Electricity R&D, www.archer-
project.eu). Following earlier irradiation tests, it completes the data set for different 
graphite grades at different temperatures, under a range of neutron doses. The experiment 
is a technical building block for nuclear cogeneration using HTRs as an alternative to fossil 
fuels. 

The irradiation of 3 HFR cycles was completed in September 2013. Post-irradiation 
examination was completed in 2014. These examinations include for instance irradiation-
induced dimensional change, dynamic Young’s modulus, and coefficient of thermal 
expansion. Next to that, a selection of specimens was used for further examinations with 
optical microscopy, electron microscopy, and x-ray diffraction. 

 

2.3 Materials Irradiations 

2.3.1 AGR graphite irradiations BLACKSTONE and ACCENT 

In the United Kingdom a fleet of Advanced Gas-cooled Reactors (AGR) is operated by EdF 
Energy. Graphite degradation is considered to be one of the key issues determining the 
remaining service life of the AGRs. Graphite data at high irradiation dose and weight loss is 
required to allow prediction and assessment of the behaviour of AGR graphite cores beyond 
their currently estimated lifetimes, thus ensuring continued safe operation and lifetime 
extension. 

The BLACKSTONE irradiations use samples trepanned from AGR core graphite and subject 
them to accelerated degradation in the HFR by simultaneous irradiation and oxidation. The 
tests are designed to enable the future condition of the AGR graphite to be predicted with 
confidence. 

After BLACKSTONE Phase I, which finished in 2012, EdF Energy have successfully used this 
data to support an updated safety case for their AGR power stations, following an 
evaluation of the data and methods used by the UK nuclear regulator. Phase II meanwhile 
completed irradiation after 12 and 16 irradiation cycles on the two capsules. The first 
capsule was dismantled in late 2012, with measurements finished in 2013. The second 
capsule has successfully been dismantled in February 2014, and measurements on the 
graphite specimens were performed throughout 2014. 

The ACCENT irradiations also contain samples trepanned from AGR core graphite. The 
ACCENT modules make use of gas-filled bellows to apply a load on the specimens (cf. 
Figure 13 and Figure 14). By applying a stress, the graphite specimens are subjected to 
irradiation creep. Post-irradiation characterisation is carried out on the graphite specimens 
to measure a broad selection of material properties. The dimensional change that is 
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2.3.2 LYRA-10 

The LYRA irradiation rig is used in the framework of the European Network AMES (Ageing 
Materials and Evaluation Studies). Its main goal is the understanding of irradiation 
behaviour of reactor pressure vessel (RPV) steels, thermal annealing effects and sensitivity 
to re-irradiation damage. The LYRA-10 experiment housed in the Pool Side Facility (PSF) of 
the HFR consists in the irradiation of different specimens representative of reactor pressure 
vessel materials, namely model steels, realistic welds and high-nickel welds. The model 
steels comprise 12 batches of steels with the basic, typical composition of WWER-1000 
and Western PWR RPV materials used by JRC-IET with the scope of understanding the role 
and influence of Ni, Si, Cr and Mn as alloying elements and certain impurities such as C and 
V on the mechanical properties of steels. The realistic welds are created at eight different 
heats, specially manufactured on the basis of typical WWER-1000 weld compositions with 
variation of certain elements, such as Ni, Si, Cr and Mn. They are of importance to 
investigate the role and synergisms of alloying elements in the radiation-induced 
degradation of RPV welds. The LYRA-10 irradiation campaign started in May 2007. In 2013 
it was irradiated for two more HFR cycles and up to now underwent eight HFR cycles at an 
average temperature of 283°C with an accumulated fast neutron fluence in the samples of 
~45×1022 n m-2 (E > 1 MeV). It was originally planned to irradiate LYRA-10 for 5 more 
cycles to achieve a fast fluence of approx. 60×1022 n m-2 (E > 1 MeV). 

The experiment is currently on hold. In 2014, a certain number of components had to be 
repaired, among them the temperature controller of the heater to maintain stable 
irradiation conditions. After updating and approval of the safety documentation the 
experiment is expected to restart in the end of 2015. 

 

 

Figure 15: LYRA-10 specimens during assembly. 
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2.4.2 CORONIS 

Objectives: 

In 2011 a new project started in the area of material development and characterisation for 
ITER. This project is conducted in the framework of F4E, the European Joint Undertaking for 
fusion energy, founded in 2007. 

The objective is to measure the tensile, fatigue and Charpy impact properties of CuCrZr 
material and CuCrZr/316L joints before and after irradiation to 0.01, 0.1 and 0.7 dpa at 
250oC. This material is foreseen for the shielding blanket in ITER because of the high heat 
dissipation of CuCrZr to the ITER cooling water. Obviously, this function could be 
jeopardised should the material fail during its service life in ITER. 

The irradiation will be performed with the Hungarian Institute AEKI, which will take care of 
the low level dose irradiation (0.01 dpa). All post irradiation experiments will be performed 
in the NRG Hot Cells. The project runs from 1 January 2011 to October 2015. The project is 
co-financed by the Dutch Ministry of Economic Affairs and F4E. 

 

Achievements: 

In 2014 the irradiation of CORONIS 01 and 02 was started in the first cycle and were fully 
completed during the year. The summarised cycle information for the CORONIS-01 and 
CORONIS-02 is shown in Table 1 and Table 2, respectively. The average of thermocouple 
temperatures measured at each axial level of the sample position in CORONIS experiments 
is plotted in Figure 17. After a cool-down period the rigs were transported to HCL for 
dismantling and Post irradiation testing of the specimens included. 
 

Table 1: Summarised cycle information of CORONIS-01. 

Cycle no. 1 2 3 
Reactor Cycle 14-02 14-03 14-04 
In-core position G7 G7 G7 
Orientation TRIO Capsule South South South 
Placed in Channel no. 3 3 3 
Start-up date 18-03-14 25-04-14 01-06-14 
start-up time (> 43MW) 16:40 19:00 14:20 
Shut down date 16-04-14 20-05-14 29-06-14 
Shut down time 7:00 16:00 16:00 
Irradiation days 28.60 24.88 28.03 
Cumulative irradiation days  28.60 53.48 81.51 

 
  



 

Table 2

 

Figure 17
01 and CORONIS

 

2.4.3

Objectives:

In July 2012 a new contract ha
(FZJ) and NRG for the irradiation and high heat flux testing of eight enhanced heat flux first 
wall modules for ITER.

The ITER first wall is manufactured using two technologies, Normal Heat Flux (NHF) for 
loading up to 2 M
plasma facing surface is made of beryllium tiles that are joined to a CuCrZr heat sink using 
hot isostatic pressing or brazing. The heat sink is attached to a supporting steel structure. 
The current
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2.5 The HFR in support of standardisation in materials research 

2.5.1 NeT: The network on standardization of neutron techniques for 

structural integrity assessment 

The European Network on Neutron Techniques Standardization for Structural Integrity (NeT) 
mainly supports progress towards improved understanding and prediction of residual 
stresses in welds for enhanced integrity assessment of nuclear power plant components. 
The NeT members have met twice in 2014, once at EdF Research near Paris and once at 
Bilgi University, Istanbul, to review the work progress and to agree on the way forward. The 
JRC organizes and manages the Network and it contributes to the scientific work through 
residual stress measurements using its beam tube facilities at the HFR. 
In 2014, NeT members have issued a comprehensive overview paper on the activities 
around the single bead on plate weld1. A dedicated issue of a scientific journal on NeT Task 
Group 4 (three beads in a slot weld) is in preparation; and finally the first specimens of 
Task Group 6 on a weld in a Nickel base alloy plate have been procured. 
 

2.5.2 Standardization of neutron diffraction for residual stress analysis 

Neutron diffraction is used as a technique for measurements of residual stresses in 
materials and components. At the HFR this technique is employed at two beam lines mainly 
for the investigation of residual stresses in nuclear grade welds. Standardization of the 
method has been underway for more than 15 years. A new Working Group has been 
established under ISO/TC 135/SC 5 charged with the drafting of an International Standard 
for the method based on an existing Technical Specification. JRC has been entrusted with 
the convenorship of this Working Group with nominated members from the UK, Germany, 
Greece, South Africa and Canada plus one observing member from Japan. The first meeting 
of the group took place in December 2014 in Berlin, Germany; and in accordance with 
standard ISO timelines the draft document should be ready for submission in 2016. 
 

2.5.3 Residual stress measurements for the Euratom Framework Programme 

project MULTIMETAL 

The members of the MULTIMETAL project jointly embarked on the advancement of 
knowledge in the area of integrity assessment of bimetallic welds for nuclear applications. 
Three different components have been studied in the programme; and sections from two of 
these components have been at the HFR in 2014 for residual stress measurements by 
neutron diffraction. Figure 19 shows a section of Mock-up no. 3 during measurements at 
neutron beam HB4. This specimen is 40 mm thick and comprises a ferritic steel plate 
welded to an austenitic stainless steel plate using austenitic stainless steel consumables. 
The materials used are Russian grade steels, as this specimen is representative of a VVER 
type reactor. Figure 20 shows the residual stresses calculated at mid-thickness in the 
ferritic section of Mock-up 2. This specimen is a short section, 29 mm long, of a bi-metallic 
weld representative of a PWR reactor of French origin. Compression in all three directions is 
shown here near the ferrite-buttering layer interface. While these two specimens were 
made from similar materials, the welding geometries and restraint conditions during 

                                                        
1 M.C. Smith, A.C. Smith, R.C. Wimpory, C. Ohms, A review of the NeT Task Group 1 residual stress 

measurement and analysis round robin on a single weld bead-on-plate specimen, International Journal of 
Pressure Vessels and Piping, Vol. 120-121, Aug-Sep 2014, pp. 93-140, doi: 10.1016/j.ijpvp.2014.05.002. 
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manufacturing were quite different. Therefore, the residual stress results are going to be 
different and the first data obtained indicated this to a certain extent. 

 

Figure 19: Section of Mock-up no. 3 on diffractometer at HB4 during measurements in the 
welding longitudinal direction; the width of the weld on the upper specimen surface is well 
visible. 

 

 

Figure 20: Estimate of residual stresses in the low-alloy-steel in Mock-up no. 2 as a 
function of distance from the ferrite-buttering layer interface; measurement taken along 
the line at mid-thickness of the plate; stress calculations based on the assumption of zero 
stress at 55 mm distance. 
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3 Isotope Production Performance 

Worldwide, approximately 25.000 patients per day depend on medical radio-isotopes 
produced in the HFR in Petten for diagnosis and therapy. 

NRG delivers these medical isotopes to mainly radio-pharmaceutical companies. 
Molybdenum-99 is by far the most important of these isotopes. It is a precursor of 
Technetium-99m which represents the most widely used medical isotope for imaging, 
accounting for 80% of nuclear diagnostic procedures. It performs a critical role in the 
diagnosis of heart disease, and is also used in cancer diagnosis through bone and organ 
scans. In addition, new treatment methods are being developed thus leading to ever 
increasing demand for (new) isotopes. Obviously, given the half-life of the produced 
isotopes and the high demand for treatment, a well-oiled just-in-time logistic infrastructure 
is essential. 

The Dutch expertise from NRG, URENCO and TU Delft in the area of medical radioisotopes 
has been recently bundled into the association "Dutch Isotope Valley" (DIVA) where 
knowledge, skills, capacity and alternative production methods for (medical) isotopes have 
attained sufficient weight to serve the world market. Considering that the NRU reactor at 
Chalk River, Canada will be shut down in 2018 
and that Canada will concentrate on domestic 
demand as opposed to export, this represents 
an excellent opportunity for DIVA to fill the 
production gap. 

In order to carry out the asset integrity 
program which is a prerequisite to run the HFR 
and its ancillary installations until 2024, the 
Dutch government has granted NRG a loan 
(through its parent company ECN). In parallel, 
NRG has successfully increased prices for its 
entire service package and these were 
accepted by all customers. In particular, NRG's 
top 6 isotope customers have expressed their 
confidence in NRG through signing long-term 
supply agreements. This was a successful step 
into the direction of financial robustness and 
viability. 

In 2014, the HFR restarted its operation on 14 
February and has performed its production 
schedule as planned during the rest of the 
year. The HFR is thus back on the international 
scene as one of the major producers of 
medical isotopes worldwide. 

Figure 21: Operators manipulating isotope 
production equipment in the HFR pool. 
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4 Glossary 

 

AIPES Association of Imaging Producers and Equipment Suppliers 

APD Automatic Power Decrease 

ARCHER Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D 

DG Directorate General 

dpa displacements per atom 

EC European Commission 

EU European Union 

FAIRFUELS Fabrication, Irradiation and Reprocessing of FUELS and target for transmutation 

FP Framework Programme 

F4E Fusion for Energy (the European Union’s Joint Undertaking for ITER 
 and the development of fusion energy) 

HB Horizontal Beam Tube 

HEU High Enriched Uranium 

HFR High Flux Reactor 

INET Institute for Nuclear and New Energy Technology 
 (Tsinghua University Beijing, China) 

ISI In-Service Inspection 

ISO International Organisation for Standardisation 

ITER International Thermonuclear Experimental Reactor 

JRC-IET JRC Institute for Energy and Transport, Petten, The Netherlands 

JRC-ITU JRC Institute for Transuranium Elements, Karlsruhe, Germany 

LEU Low Enriched Uranium 

MA Minor Actinides 

NRG Nuclear Research and consultancy Group, Petten (NL) 

PELGRIMM PELlets versus GRanulates: Irradiation, Manufacturing & Modelling 

PIE Post Irradiation Examination 

RE 1 RE: amount of radioactivity causing a dose of 1 Sv if inhaled or ingested 
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