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Prof. Yasuhiko Fujii, President, Asia-Oceania Neutron Scattering Association, 
fellow scientists, ladies and gentlemen, first of all allow me to express my deeply 
felt thanks to AONSA for their 2013 prize.  
 
I understand the prize is awarded ‘for impact or contribution to the use or 
development of neutron scattering science or technology in the Asia-Oceania 
region’. I shall, therefore, present some of my scientific contributions and try to 
relate them to the larger context of the growth of neutron scattering in our region. I 
hope this will become clear as I proceed. I consider this a great honour, and 
recognition of a lifetime of work in neutron scattering. I thank you very much. I 
appreciate this immensely. 
 
Neutron scattering experiments are necessarily implemented at facilities which 
involve a large number of persons to run them and the experiments involve many 
colleagues. At the very outset, I would like to acknowledge my gratitude to my 
seniors from whom I learnt the rules of the game, express my thanks to 
contemporaries and colleagues for continued intellectual and physical cooperation 
over many decades and my deep appreciation to the younger ones for their inputs 
and endeavours to the programme at Trombay. I regret that lack of space prevents 
me from mentioning each one of them by name. 
 
It is significant that this regional prize is being awarded during an international 
meet. To me, it emphasizes the importance of intra-regional and inter-regional 
linkages in the growth of science. AONSA stands for this and therefore, this prize is 
dear to me. While this need not be over emphasized in these days of major 
international collaborations, I think, this was less obvious in 1958 when I started my 
life as a research scientist at the Atomic Energy Establishment Trombay. AEET is 
now called Bhabha Atomic Research Centre (BARC) after the demise of the great 
scientist and visionary who founded India’s Atomic Energy programme in 1952 
under the patronage of the enlightened and science oriented Prime Minister of India, 
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Jawahar Lal Nehru.  
 
India became independent on 15th August 1947, a backward and impoverished 
nation without a manufacturing base worth its name for such a large country but 
with a substantial legacy of intellectual pursuit of several millennia. Bhabha, with 
great confidence and audacity, convinced Prime Minister Nehru of the need for a 
broad based Atomic Energy programme amidst considerable opposition. Nehru, 
with his developmental vision for the country, backed him to the hilt. The first 
reactor, Apsara, was built indigenously with a small group of scientists and 
engineers. It became critical on 4th August 1956 (Fig.1). United Kingdom supplied 
the highly enriched uranium core in a great spirit of scientific cooperation. This was 
essentially a reactor with a flux of >1011 n/cm2/sec at 100-250 KW, the power at 
which it operated most of the time. 
 

  
 
Fig.1. Apsara reactor 

 

 
Fig.2. First automatic diffractometer (~1958-59) 

 

Initiation at Trombay- (1958-) 
 
P.K. Iyengar initiated the Indian programme on neutron scattering at Apsara reactor 
after his return from Canada in March 1958 where he had worked with Brockhouse 
for some time.  Following our founder Bhabha, it was generally accepted at BARC 
that if we wished to establish a large scale and sustainable research programme, it 
would be necessary to develop the needed instruments locally. Firstly, this would 
generate the required expertise to innovate and carry out long term research and 
secondly, building equipment locally would cost substantially less compared to 
importing by paying in foreign currency of which there was a severe shortage.  
 
N.S. Satyamurthy and I joined P.K. Iyengar about four months after his return from 
Canada. Our first task was to build an automatic powder diffractometer. Its basic 
design was similar to the Canadian machine: all the mechanical parts as well as 
electronics and automation and the detector were built within the Establishment. 
Fig. 2 shows the photograph of this instrument. The first set of data on 
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To Chalk River, Canada (1961-) 
 
After three years in Trombay, I was deputed to Chalk River, Canada to work with 
Brockhouse under a Colombo Plan fellowship in August 1961. During the next 
sixteen months, the major experiment that I would be doing was on liquid argon at 
the high-flux NRU reactor. The constant-Q technique was established by this time 
and we collected such data on the Triple Axis Spectrometer. For smaller wave-
vector transfers, time-of-flight data was collected on the rotating crystal 
spectrometer at several closely spaced scattering angles. It was converted to 
constant-Q information; this was probably the first such exercise. As late as 2006, 
Roger Cowley re-emphasized the importance of constant-Q data for certain 
sensitive experiments [4]. Incidentally, this was also a period when there was 
considerable debate about peaks in time-of-flight data at a fixed scattering angle 
being seen as evidence of phonons in liquids; I think this issue is largely sorted out 
now. Combining these two data sets, after removing the effects of resolution at the 
level of intermediate scattering function, we derived the van-Hove time dependent 
self and pair correlation functions [3] (Figs. 5 and 6). While on the subject of simple 
liquids, let me add that much later, in 1974, when I was on a sabbatical at KFA, 
Juelich with Springer, we observed [5] Raleigh and Brillouin peaks in constant-Q 
experiments in normal 4He at 4.2oK at small q values between 0.06 and 0.2 A-1 (Fig 
7) and examined the limits of hydrodynamics. 
 

 
Fig. 5 Pair-correlation function of liquid Ar  
at 84.5K. 

 
 
 
 

 
 
 
 

Fig. 6. Self-correlation function of liquid Ar as 
function of time. 

 
Back to Trombay-Cirus (1963-) 
 

I returned to India in January 1963. Even before I had left for Canada, the second 
reactor, CIR to be later named Cirus, had become critical. Cirus was a medium flux 
reactor delivering a flux of about 1013 n/cm2/sec, much better than Apsara. A major 
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neutron scattering programme was 
initiated there under the leadership 
of P.K. Iyengar. By the end of 
1961, three more diffractometers -- 
a powder machine, a triple axis 
spectrometer and a filter detector 
spectrometer were set up and the 
instruments at Apsara were shifted 
to Cirus. G. Venkataraman and K. 
Usha built a rotating crystal 
spectrometer. Inelastic scattering 
measurements on phonons in Mg 
and librational modes in 
ammonium halides were reported 
at the 1962 IAEA Conference in 
Chalk River, Canada. IAEA 
thereafter decided to hold the next 
meeting at Trombay in December 
1964 on India’s invitation. The 
ideas of window filter 
spectrometer-- with Be filter and 
BeO back reflector-- and multi-
arm spectrometer were introduced 
and implemented by Iyengar and 
his team. Window filter improved the resolution of the analyser vis-à-vis the Be 
filter both in energy and momentum [6]. This led to measurements of (a) 
anharmonicity of the rotational potential in NH4Cl and (b) phonons in Mg. All this 
happened during my absence from Trombay. 
I realised on returning from Canada that with a reactor like Cirus, we are always 
going to be struggling for intensity and therefore thought of concentrating on 
hydrogenous materials where intensity would be less of a constraint. After looking 
at the canonical liquid argon in Chalk River, methane, a spherical top molecule, 
seemed a natural choice. Rotational states of CH4 are separated by 1.3 meV. 
Rotating crystal spectrometer with its good resolution of 0.36 meV (reducible to 0.2 
meV) was an ideal instrument for observing rotational lines with such a separation. 
Initial experiments were reported at the 1964 IAEA Conference at Bombay (now 
Mumbai) [7]. Our conclusion was that methane molecules do not freely rotate in the 
liquid state (Fig. 8). This was contrary to some existing neutron results [8] but in 
agreement with infrared absorption and Raman scattering experiments. We also 
treated the entire quasi-elastic and inelastic spectrum in a single framework, not 
common then [7,9a] (Fig. 8). These experiments were followed by those on liquids 
CD4 [10] and NH3 [11]. Sears [12] showed how to quantitatively integrate neutron 
and optical data into a single framework using our data on liquid methane. He used  

 
Fig.7. Rayleigh and Brillouin scattering of neutrons 
from liquid Helium at 4.2K 
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presence of pure elastic peak in the  solid which is absent in liquid [16]. Thus, at the 
freezing point, while translational diffusion changes by many orders, expectedly 
there is no observable change in the rotational motion.  
 
The Philippines (1966/67): Regional Cooperation Agreement (RCA)  
 
Following the Bombay conference of 
1964, R. Ramanna and P.K. Iyengar 
proposed a Cooperative Research Project 
(CRP) under the regional collaboration 
agreement (RCA) in South East Asia 
under the aegis of the International Atomic 
Energy Agency, Vienna. The goal was to 
train scientists from countries of the region 
like the Philippines, Korea, Indonesia, 
Thailand, Taiwan, etc. in methods of 
neutron scattering. BARC donated a home 
built diffractometer and installed it at the 
Triga reactor at Philippine Atomic 
Research Centre in 1965. I visited PARC in 1966/67 for a year lecturing, building a 
beryllium detector spectrometer in-house and doing experiments with the 
diffractometer. Here again, using a small research reactor, we reported our work on 
neutron diffraction by liquid zinc (Fig. 11) in Physical Review [17]. We showed (a) 
the earlier x-ray data were faulty, (b) that the law of corresponding states suggested 
by Paskin, using a hard sphere model, was not an adequate description for all 
monatomic liquids and shadows of the structure of the solid are retained in the 
liquid near the melting point, thus permitting a quasicrystalline model description 
and (c) that the use of existing pseudo potential of Animalu & Heine to calculate the 
resistivity gives a value almost half of the measured value; we conjectured this to be 
due to some basic reason (later experiments at Trombay on phonons in another 
hexagonal metal, Be, proved breakdown of simple pseudopotetial theory in Be!). 
Some of the scientists who worked under RCA went on to start neutron scattering 
programmes in their respective countries. Some scientists who benefited from RCA 
and whose names come readily to my mind include M. Natera, H. Ibarra, Q. 
Navarro (the Philippines), Marsongkohadi (Indonesia), Therawoot and S. 
Chatraphorn (Thailand). G. B. Lee (South Korea) and there were several others.  

 
Cirus again: ‘Molecular’ Solids: Rotational Diffusion and Librations (1967-) 
 
By the time I returned from the Philippines in September 1967, scientists were 
beginning to appreciate that rotational diffusion of molecular groups like NH4

+, 
CH3, CH4 etc in solids should show quasi elastic broadening. Skold [18] and 

 
 
Fig. 11. Diffraction from liquid Zinc at 480ºC 
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curves as the final wave-vector is not well defined. However, the available 
intensities of incoming neutrons, especially for large energy transfers is substantial. 
With Cirus reactor, it was prohibitively difficult to observe phonons higher than 
about 13THz in Be using a triple axis spectrometer. So we decided to examine the 
feasibility of FDS for such measurements. We demonstrated quantitatively, through 
line shape calculations using an asymmetric resolution function, that the filter 
detector spectrometer can indeed be used to accurately measure even steep 
dispersion curves [24] in Be: we measured phonons from ~ 7.5 Thz to 20 THz using 
the moderate flux Cirus reactor. We provided experimental proof of the breakdown 
of simple pseudo potential theory in Be [25] (Fig. 16). This opened up the 
possibility of measuring high energy phonons even with a modest reactor. 

 
Fig.16(left). Phonon dispersion curves in 
Be at room temperature. Curves through 
the data are guide to eye [24]. 

 
Fig. 16(right). Proof of non-local pseudo potential 
in Be through measurement of phonon dispersion 
relations [25].

 
Dhruva (1972 -) 
 
BARC decided to build a higher flux reactor than Cirus in 1972. This offered new 
opportunities to develop better instruments and also design more efficient beam 
delivery devices. I was given the task of proposing a set of beam tubes required for 
neutron scattering experiments. The layout of the beam channels is shown in Fig. 
17. Besides several conventional radial beam tubes in the pile block, there are four 
tangential beam tubes, two through tubes and beam tubes to insert cold and hot 
neutron sources. The design also incorporates built-in recessed cavities and 
cutaways in the biological shielding to enable closer access to the high flux region. 
Two guide tubes beginning at the calendria get terminated outside the reactor hall in 
the guide tube laboratory. The design permits improved accessibility to neutrons 
and better signal to noise ratio. 
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understand the latest in this series was a school in 2010 at BARC in cooperation 
with AONSA. 
 
In December 1995, I moved over from BARC and took up the Directorship of IUC-
DAEF to help consolidate this joint effort of the Solid State Physics Division, 
BARC and IUC-DAEF. I was a happy and satisfied person as a large number of 
participants from about forty institutions spread all over India started using neutrons 
before I left IUC-DAEF in October 2002. I shall return to another facet of IUC-
DAEF (now renamed UGC-DAE-CSR or University Grants commission - 
Department of Atomic Energy Consortium for Scientific Research) later. 
 
SANS at Cirus (1985-- 
 
While Dhruva was under construction, some relevant developments were 
undertaken at Cirus. We installed a primitive SANS machine at Cirus and started 
SANS experiments [27] with a view to having a full-fledged PSD based machine at 
the new Dhruva reactor (100MW; 1.8x1014 n/cm2/sec). As Dhruva took a long time 
to come to operational stage, the SANS experiments were well established at Cirus 
itself [28] with continuous upgrades. Along with powder diffractometers, it became 
the most sought after neutron facility; the new SANS machine [29] at Dhruva 
continues to be so. 
 
Spallation Neutron Source: ISIS-BARC collaboration: T-Analyser (1980/1- 
 
At this point, let me switch over to another parallel development which took place 
in early eighties. George Manning, Director of Rutherford Appleton Laboratory, UK 
was passing through BARC when P K Iyengar was the Director. They knew each 
other from their Chalk River days. Manning mentioned to Iyengar that they were 
looking for international participation/ collaboration for their Spallation Neutron 
Source (SNS) project. They had already decided on several instruments and were 
prepared to look for collaboration if a new idea could be proposed. With my 
background with different types of inelastic instruments, I felt that there is a place 
for an instrument with resolution in an energy window of tens of eV, i.e., between 
a triple axis and a back scattering spectrometer. That is how the thought of T-
window analyzer with an energy resolution of tens of eV was born [30]. My 
colleague Goyal suggested [31] that this could ideally match with a long incident 
flight path of ~ 60 meters with regard to energy resolution at SNS. We worked out 
various numbers and made the proposal. RAL thought it to be sufficiently different 
from other proposed instruments to open up a new beam with cold hydrogen 
moderator. Thus, the original IRIS beam line with T-analyzer came into being.  
 
Let me spend a few minutes on the T-window analyzer. A standard window filter 
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with a resolution of 20 eV, we had to set up a special spectrometer with a 
resolution of ~5 eV [34] to measure the width of the cut-off and also its shift 
between the two temperatures (Fig. 21). Having validated the basics, the T-
window analyzer was built at BARC (Fig. 22) and installed at the end of a 30 metre 
long incident flight path at the hydrogen cold source at SNS, later called ISIS, to 
receive Day-1 neutrons. Thus, a unique beamline with energy resolution of ~30-50  
eV at ~ 5.0 meV and Q up to 3.0A-1 was opened up at ISIS (Fig.23). 
Experiments on reorientation in NH4Br, ferroelectric to paraelectric transition in 

(NH4)2SO4, tunneling in methyl acetate by Nottingham group of Clough and motion 
of H2 in intercalated carbon [C24Cs(H2)1.8] by the Oxford group of John White were 
performed in 1985/86 (RAL Annual Reports 1985, 1986). The analyser was later 
replaced with a more versatile one using many crystals of pyrographite. This 
improved the throughput, gave improved energy resolution but reduced range in Q. 
The most important consequence of this collaboration from the Indian point of view 
was that our scientists got access to ALL the neutron instruments at ISIS which was 
world’s best pulsed neutron source at that time and indeed for a long time to come. 
Many Indian scientists benefited from this collaboration for nearly two decades. 
 
IUC-DAEF (now UGC-DAE CSR) beamline at Dhruva (1994-- 
 
With the BARC-University cooperation maturing, Inter University Consortium for 
Department of Atomic Energy Facilities (IUC-DAEF) thought it fit to involve itself 
deeper in the neutron scattering programme by proposing to build instruments on a 
new beam line. The through-tube TT-1015 was made available to IUC-DAEF for 

 
 
Fig.23. The IRIS user group in front of the Indian Analyser  
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